Contents

EXECUTIVE SUMMARY ... 3

FULL REPORT ... 5

DIGITAL INFRASTRUCTURE.. 5
 • Increased Wireless Access.. 5
 • Voice over IP (VoIP) In All Buildings ... 6
 • iClassrooms .. 6
 • Network Access Control (NAC) ... 7
Mid-range goals (2-5 years) .. 8
Long-term Goals/Vision .. 8

TRAINING/SUPPORT ... 9
 • Improved Help Desk/Highly-Trained Support Staff .. 9
 • More Self-Service Tools .. 10
 • Increased Technology Training .. 10
Mid-range goals (2-5 years) .. 12
Long-Term Goals/Vision.. 12

ACADEMIC AND ADMINISTRATIVE FUNCTIONAL NEEDS .. 13
 • Additional 24-hour Lab Space/Printing .. 13
 • Collaborative Tech Workspaces ... 14
 • Technology Test Lab/Sandboxes .. 14
 • Technology Pilot Program .. 15
Mid-range Goals (2-5 years) .. 16
Long-term Goals .. 16

GOVERNANCE/DECENTRALIZED IS ... 17
 • Technology Governance ... 17
 • Distributed IT Budgets .. 18
Mid-range goals (2 -5 years) .. 19
Long-term Goals .. 19

FINAL THOUGHTS AND CONCLUSIONS .. 20
Executive Summary

The Technology subgroup of the Technology/Online Education Task Force held multiple discussions to determine the highest priority needs in campus technology. Consideration was given to those priorities which would: make the greatest impact, present the most effective monetary investment and provide a good foundation for a more promising technology-enhanced environment for the future. A consistent theme in each discussion was the urgency for the University to “catch up” to current technology standards in an effort to meet the expectations of current students, as well as the standards to which new students have become accustomed in secondary education. Of equal importance was the necessity to “get ahead of the curve” in order to adequately prepare these same students for the “real world” upon matriculation. To that end, the following major categories were identified as encompassing areas of significant need for immediate improvement:

- Digital Infrastructure
- Training and Support
- Academic and Administrative Functional Needs
- Governance and Decentralization

While many competing requests were identified, the following items were determined by the subgroup and verified by the entire Technology/Online Education Task Force as immediate needs that should be given higher priority in the planning process:

- Digital Infrastructure
 - Increased wireless access - $85,000
 - Voice over IP (5 remaining buildings) - $130,000
 - Complete iClassroom initiative for all eligible learning spaces - $150,000
 - Network Access Control (for security, virus control and device registration) - $100,000

- Training/Support
 - Improved Help Desk/highly-trained support staff - $95,000
 - Improved self-service tools, FAQs and solutions - $25,000
 - Increased technology training/technology training center - $75,000
 - Increased availability and support for instructional technologies

- Academic and Administrative Functional Needs/Tools
 - Additional 24-hour lab space/printing - $45,000 per lab
 - Collaborative technology workspaces- based on technology and space
 - Technology test lab/sandboxes - $50,000
 - Technology pilot program - possible $10,000 annually to fund projects

- Governance/Decentralized IS
 - Technology Governance Committee - possible budget set aside to fund technology projects/pilot programs approved by committee
 - Distributed IT budgets- budget to be determined for distribution to departments

All costs are estimated and may vary based on actual equipment, space, staffing and usage requirements.
For each high-priority need, Technology/Online Education Task Force members provided feedback on: barriers to implementation, consequences of failure to implement and general thoughts or notes on the scale of each initiative. In addition to this information, the full report contains an explanation of estimated costs, scope, and approximate implementation timelines. While these initiatives were deemed the highest priority by the group, many other areas of improvement were identified. These are also included in the full report as mid-range and long-term goals forecasted for consideration in the next two plus years.
Digital Infrastructure

Improve existing infrastructure to standards that provide more up-to-date and industry-standard workspaces (e.g. classrooms, offices, labs, collaborative spaces) with current technology for all campus constituents.

Immediate Needs:

- Increased Wireless Access

To support both academic and administrative needs, complete and adequate wireless coverage is needed across all areas of campus. Under this initiative, the wireless infrastructure would be upgraded to provide acceptable levels of both coverage and bandwidth in all academic areas. Secondary considerations include wireless coverage in common outdoor areas (e.g. canal, green spaces, outdoor seating areas) and an upgrade/refresh of coverage in the dormitories with the possibility of placing the residence halls on their own wireless network.

Estimated Costs:
- $85,000 for equipment to complete indoor remediation
- Adding outdoor coverage would be dependent upon number of areas covered

Scope:
The indoor remediation would include replacement of outdated/non-supported access points and the addition of new access points to provide adequate coverage in all academic and administrative areas.

Adding outdoor coverage would initially include the more common social gathering spots, primarily the Smith Mall area, outside of the main entrance to Krannert Memorial Library and the umbrella tables outside the east end of Schwitzer. This could eventually be extended to include green spaces outside of the residence halls.

Timeline to Complete:
Indoor project could be completed over a summer to minimize disruptions in academic areas.

Barriers to Implementation
- Funding

Consequences of Failure
- Online resources cannot be used by faculty or students in class
- Students will choose to go to other schools and facilities
- Guests: corporate, business and social

Miscellaneous Thoughts
- During the fall and spring semesters many students study in Smith Mall - very helpful
- Multiple mid-range items need immediate attention
- Security?
- Can cell phone receptors be included?
- Future-looking issues need attention
• **Voice over IP (VoIP) In All Buildings**

This initiative involves the conversion of all remaining buildings to VoIP. Some buildings and offices are still utilizing the older, copper-leased lines. As part of this project, new call center software would be implemented and placed in the new data center. The new software could potentially allow additional features, such as visual voice mail, advanced call forwarding and other benefits.

Estimated Costs:
$130,000 in equipment and labor

Scope:
This would add full VoIP capabilities to the following buildings: Good, Martin, Lilly, Christel DeHaan Fine Arts Center and the Physical Plant.

Timeline:
Estimated time to complete is three to six months. Installation is dependent on coordinated efforts between UIndy, AT&T and contractor availability for installation.

Barriers to Implementation
- Cost to upgrade building wiring
- Training
- Good Hall and other older brick buildings

Consequences of Failure
- Still do not have a useable work phone
- Coverage if IP system goes down
- Still need access to fax and other hardwire servers

Miscellaneous Thoughts
- Access VoIP in spaces like Esch
- Swipe cards for all buildings is an immediate need

• **iClassrooms**

The primary goal of this initiative is to place technology in every appropriate learning space to achieve a minimum level of “laptop-ready.” In some spaces, this may mean mounting flat panel monitors. In others, it may mean installation of projectors and/or teaching workstations at a substantially higher cost. Adequate funding would be needed to keep classroom technology current through refreshes and updates to existing installations.

Estimated Costs:
$150,000 for equipment, wiring and labor; ongoing costs for refreshes and updates

Scope:
This includes placing, at a minimum, laptop-ready technology in all appropriate classrooms. Cost includes some full iClassroom configurations (projector, teaching station), but determination for each room is made based on room size, primary purpose and feedback from academic departments.
Timeline:
Complete project should take approximately six months depending on classroom and vendor availability (for installation purposes).

Barriers to Implementation
- Getting everyone to agree on what is best for the space
- Funding
- Need more electrical outlets
- Need to be in compliance with ADA
- Need wireless “laptop-ready” classrooms

Consequences of Failure
- Media Services will still have to deliver equipment
- People will just do it on their own

Miscellaneous Thoughts
- Faculty and staff need training to use iClassrooms
- iClassrooms, as configured, still only think of teaching as stand and deliver
- Whiteboard with projector, smart boards, etc; should have some flexibility
- Film-ready: dark shades, HD projector, stadium seating, sound system
- Mobile device ready; flat screen TV
- Collaboration classroom: moveable desk, flat screens, plugs, access
- Moveable chairs and tables
- Outlets in the floor for laptops

- Network Access Control (NAC)

Network Access Control is used to provide security, virus control and device registration on the network. The current NAC was an internally, custom-written application that was developed in early 2005 and is no longer capable of supporting today’s needs. One of the primary developers is no longer with the University and the current system is hampering overall network design and optimization. A new NAC would provide the ability for easier self-registration of all device types and more robust support for bring-your-own-device (BYOD) to all campus constituents.

Estimated Costs:
$100,000 for equipment, installation and consultation

Scope:
This would cover the entire UIndy network infrastructure, including all wired and wireless devices.

Timeline:
Purchase to initial installation should take approximately two months with full functionality implemented in approximately six months.

Barriers to Implementation
- Funding

Consequences of Failure
- Information integrity – lawsuits
- Security of network
- Limits support of devices such as tablets and cell phones
• Inability to control who accesses network resources
• Hampered network expansion; robustness

Mid-range goals (2-5 years):

• Card Swipe Access/Security Cameras
• More Technology-friendly Classroom Spaces
• Cellular Phone Repeaters (may need to be high priority for security reasons)

Long-term Goals/Vision:

The longer term vision of our digital infrastructure is to provide a reliable, secure and robust network backbone to adequately support all other technology on campus. Where appropriate and cost-effective, use of the cloud services and Software as a Service (SaaS) should be implemented where scale and resources make sense.
Training/Support

A consistent message was heard from the Technology Task Force subgroup and others about the need for improved technology support and training for all areas of campus. From a better front line Help Desk to field support and a myriad of training for students, faculty and staff, a better support and training model is a high priority for campus.

Immediate Needs:

- Improved Help Desk/Highly-trained Support Staff

A more visible, user-friendly and professional Help Desk is urgently needed on campus. Better training and customer service is needed at both the full-time and student worker level. While it would be cost-prohibitive to completely staff the Help Desk with full-time, professional staff, recruiting and retaining better student workers is imperative. To do so, the University policy of equal pay for all campus jobs needs to be reviewed. By implementing differential pay for qualified and returning student workers, the overall quality and abilities of student workers can be maximized.

Estimated Costs:

$95,000 for 2 FTE (salary and benefits) to extend hours and provide more professional staff.

Scope:

The scope of this project only includes a campus-based Help Desk. Outsourcing to a remote call center to provide 24x7 coverage would be a separate proposal, possibly under the Online Education initiative but could result in a slight cost reduction in student wages if call volume decreases as the result of an outside call center.

Timeline:

Move and restructure of the Help Desk to be completed by early March, 2013; training initiatives to be completed during Summer 2013.

Barriers to Implementation

- Budget/paying professional staff
- Need staff focused on customer service and technology
- Differential pay for student workers to attract and retain qualified students

Consequences of Failure

- Reputation decreases
- Viability of online programs
- Further frustration/lack of respect for technology staff on campus

Miscellaneous Thoughts

- 24-hour Help Desk needed; online students can be international and in different time zones
- Put a call out to students on campus; find technology-savvy students and offer them a job
- Consider outsourcing
- Creating GA/TA positions for graduate students for better staffing
- How can Six Sigma help this entire process?
- Hall-specific IT staff
• Ulndy will need to step up on salaries for IT personal to be more competitive

• More Self-Service Tools and Online Documentation Of Frequently Asked Questions (FAQs) and Solutions

Implementation of new or improved, online, self-help tools, such as password resets, would alleviate the Help Desk from more mundane tasks and allow them to focus more on other issues. In addition to the self-help tools, better and easier-to-locate information on common questions and solutions regarding the use of technology and devices on campus would allow many users to self-diagnose and solve problems without the need to contact the Help Desk or wait for the Help Desk to be open.

Estimated Costs:
$25,000 for consulting costs to evaluate, organize, create and improve existing FAQs and assist with evaluation of other possible self-help tools or areas of improvement.

Scope:
A new and improved FAQ/Help Desk web site would be created. The new site would consolidate instructions, utilizing a mix of video, screen captures and other technology to provide easier to use documentation. Links for common tasks, such as password reset, would be added to landing page on My Ulndy.

Timeline:
Evaluation to full implementation of FAQ/Help Desk website would be approximately four to six months.

Barriers to Implementation
• Location to self-help tool (advertisement and communication)
• Instructions need to be clear and written by users

Consequences of Failure
• Without self-service help or training, the Help Desk will be in a constant period of requests
• Getting further behind in all aspects

Miscellaneous Thoughts
• Provide tutorials, print outs or guides to staff regarding Banner, ACE and other tools
• Training for students as part of freshmen orientation or New Student Experience
• In different languages: Chinese, Spanish, etc.
• Discount software

• Increased Technology Training

A loud and clear message was received about the need for more frequent and better technology training. This ran the gamut from training for students on the use of ACE and training for faculty on instructional technologies to training for all constituents on the use of common campus software tools. Under this initiative, a dedicated technology training center would be created. This would be configured with the necessary equipment and tools to provide the various technology training classes as opposed to the current situation of fighting for computer lab
space with academic classes. Based on feedback and need, a regular training schedule would be created. It has been suggested by the Task Force that attendance at training should be incentivized or mandated for certain classes of employees.

Estimated Costs:
Approximately $75,000 to equip a full technology training center that would include:
- Laptop cart with 25 laptops and workstations to accommodate 25 individuals
- Full projection system and teaching station
- Touch screen monitors
- Appropriate electrical supply

Scope:
The dedicated technology training lab would be a space to support training for 20-25 individuals. While initiatives of the Space Task Force would come into play, this proposal is recommending the repurposing of the Sease 101 classroom to minimize new construction costs. LEVA’s use of this space could be maintained as required by scheduling accordingly. By implementing movable furniture, mobile technology and card-swipe access, this space could easily be reconfigured as needed for other uses such as additional collaborative student workspace when not in use for training.

Timeline:
Depending upon the technology implemented, the initial lab could be completed and ready for use in an estimated two to three months, depending on construction needs and vendor availability.

Barriers to Implementation
- Faculty/staff - you can lead a horse to water
- Who is qualified to train?
- Tracking if students have been trained or not; getting students to do the training
- Time for training has to be a priority

Consequences of Failure
- Faculty taking class time to continue training students
- Technology is not getting used
- Need to be self sufficient
- Students falling behind, losing points or even failing because they do not know how to use ACE

Miscellaneous Thoughts
- Need face-to-face training especially for faculty who are not using or want to use technology/ACE
- More student training
- Unit training would be more helpful
- Need follow up on training; on-going support to increase knowledge/use of technology
- Unit-centered people to help with the technology
- Access to video training/archived webinars to play on-demand for training on specific tools; accessible from anywhere/anytime (for students and faculty)
- Distributed model of technology help
- A “place” to go for help
- Ongoing faculty development/training on technology
Increased Availability and Support For Instructional Technologies

Outside of the standard Help Desk, there is a need for a “one-stop shop” regarding the development and use of instructional technologies and ACE. Currently, instructional technology staff are scattered and cloistered in various sections of the library. Under the new design, a sort of “mini-help desk” specifically for instructional technology would be created. This would house instructional designer(s), instructional technology trainer(s) and other support staff for both addressing of questions or problems on a walk-in basis and for scheduling of more formal training.

This initiative is being implemented through the reorganization of Information Systems and the formation of the Faculty Learning/Design Studio, under the purview of Academic Affairs. The “one-stop shop” aspect of the Studio is currently in development.

Barriers to Implementation
- No follow-up or on-going support after training

Consequences of Failure
- Falling further behind
- Students not prepared for careers

Miscellaneous Thoughts
- Student tracking/engagement
- Outsourcing hardware support
- Instructional technology needs to move out of IS and into Academic Affairs
- Good experience for student workers
- Make it visible (Schwitzer)
- Separate from Help Desk
- Streaming server
- Creating GA/TA positions for graduate students for better staffing

Mid-range goals (2-5 years):
- 24-hour Call Center - $25,000 annually for after-hours call pick-up (cost may increase based on call volume)
- Distributed IT Support – a minimum of $95,000 for 2 FTE (salary and benefits)
- Better Support/Technology for Athens

Long-Term Goals/Vision:

The vision of technology support and training would be to provide timely, useful and friendly service for the use of technology on campus. Through the use of dedicated, professional and well-trained staff, technology should be used to enhance student learning and provide efficiencies – not obstacles – to faculty and staff.
Academic and Administrative Functional Needs/Tools

Immediate Needs:

• Additional 24-hour Lab Space/Printing

Students have indicated both through the Technology, Space and Visioning sessions, a need for additional 24-hour accessible computer lab space and printing resources. One immediate planned addition to alleviate printing needs will be to begin a pilot project of print release stations in the residence halls. However, a secondary 24-hour computer lab is also desired. This may be accomplished via a new lab in the Schwitzer Student Center or by possibly working on the security necessary to allow the existing lab space in the basement of Esch to remain open 24 hours.

Estimated Costs:
$45,000 per lab which includes:
 o 20 workstations
 o Printer
 o Furniture
 o Electrical supply

Scope:
Scope, in this case, is highly dependent upon location, space, security and other factors that are unknown or under the purview of other task forces/committees. At the least, it would include equipping a new space with workstations, printers and wired and wireless access.

Timeline:
Once a space was configured and wired, time involved would only be few weeks to order, image and install equipment.

Barriers to Implementation
 ▪ Training for RAs/RDs in building
 ▪ Location
 ▪ Staffing
 ▪ Funding
 ▪ Security

Consequences of Failure
 ▪ Retention of students
 ▪ Need to expand to support online classes if they become a reality

Miscellaneous Thoughts
 ▪ Can we do something with the lone computers in Schwitzer near the Perk; hook them to a printer?
 ▪ Dorm printers
 ▪ Work-study students as lab monitors
 ▪ Encourage faculty to look at paperless
 ▪ Would it be better to give all students laptops and access to printers
 ▪ Adequate security; actual officers walking in the building
 ▪ More 24-hour printing; printing charge must be considered
If online education is going to be a priority then having a paperless campus has to be a priority; this is a foundation to an online environment for students.

Collaborative Tech Workspaces

While KML has some basic collaborative computer workstations available, these are limited to two or three students working together and are not conducive to larger group projects or situations where faculty may wish to work with students on collaborative projects involving technology. Creation of dedicated technology workspaces, with a variety of equipment, would meet the needs of larger collaborative projects and give the faculty the ability to work directly with students on technology projects.

Estimated Costs:
Completely variable, based on size, quantity and type of technologies implemented. One idea would be investigation into the possibility of a corporate partnership (e.g. IBM, HP, Dell) with a named location for installation and use of their latest technologies, such as the “IBM Collaborative Technology Studio.” Otherwise, costs could easily approach six figures to outfit a state-of-the-art collaborative technology workspace. Depending upon size and technology, additional staff may be needed to manage.

Scope:
Again, the scope is determined by the budget, types of collaborative technology and available space.

Timeline:
Dependent on determination of space and type of technology to be implemented.

Barriers to Implementation
- Space
- Location(s)

Consequences of Failure
- Attracting/retaining students and faculty
- Students that lack collaboration and communication skills

Miscellaneous Thoughts
- Need to have webinar capabilities for online students and faculty
- Need for “curb-to-curb” access
- Moveable desks and group desks
- Smart boards
- Access through the computers

Technology Test Lab/Sandboxes

A test lab and the creation of technology “sandboxes” would involve an isolated network and series of servers independent of the production UIndy environment. This test lab and the sandboxes would allow new technologies to be tested and vetted. Sandboxes could be created upon request for departments, programs or even for individual projects to investigate new technologies. The test lab could also be used for troubleshooting of devices or sample configurations.
Estimated Costs:
$50,000 which includes: network access, server hardware, environmental control, electrical supply backup, furniture, etc. in the partially repurposed Sease Wing data center (additional costs would be incurred if another location is used). Other costs would vary based the scope of the individual projects.

Scope:
Depending upon designed capacity, a virtual sandbox environment could be created upon request for purposes of testing new software, piloting new projects or other academic needs. It is expected that some governing body would vet ideas for security and safety.

Timeline:
Setup and implementation of the initial test environment would be two to four months.

Barriers to Implementation
- Explanation of why necessary to justify cost
- Support for faculty on testing the new technologies
- Need process and policies for access/usage of sandbox
- Would vendors allow us to test software without purchasing agreement already in place

Consequences of Failure
- Purchasing technology without knowing full scope of use
- Attraction/retention of students
- Falling further behind in the ever changing world of technology
- Faculty falling behind in scholarship and research in fields
- Continued stifling of ideas and creativity

Miscellaneous Thoughts
- Hatchery
- Great idea
- Departments need to be proactive regarding what software is needed prior to semester not after

• Technology Pilot Program

The Technology Pilot Program would function similarly to a scaled-down version of the University Incubator Program and focus on piloting of new technology for the campus. Departments or individuals could propose new or unique technologies that meet certain guidelines. Some funding would be available to pilot this new technology, with the option to expand successful projects to betas and eventually to the entire campus.

Estimated Costs:
$10,000 annually to fund pilot startup programs; money would be distributed via a governing body.

Scope:
Much like the larger incubator program, but focused on technology projects, submissions would be approved for a set pilot period. When a pilot is completed, a report and recommendations for scale-up, including projected costs, would be submitted to the University Planning Commission for full project funding.
Timeline:
Once a governing body is established, the pilot program could likely start accepting proposals in a three to six month period.

Barriers to Implementation
- Lack of collaboration and planning with faculty
- Setting up protocols/parameters
- Faculty time and training to understand need/use of new technology

Consequences of Failure
- Will get further behind
- Faculty falling behind in scholarship and research in fields

Miscellaneous Thoughts
- Tie in with Innovator Grant

Mid-range Goals (2-5 years):

- Hosted, Industry Standard E-mail, Calendar, Document Sharing and Collaboration Suite ($85,000 - includes consulting costs for implementation and training)
- Industry Standard Replacement Cycles For Computers (additional $100,000 per year for desktop replacement cycle)
- Increased Mobile Support / Mobile-friendly Apps ($50,000 plus annual license/maintenance fees)
- Centralized Document Imaging/Management ($300,000 - includes system and consulting to manage and implement; additional costs incurred for licensing, maintenance and staff to manage application/system beyond implementation)
- Paperless Campus
- Other: media distribution/streaming, eTextbooks, discounted software and departmental website control

Long-term Goals:

- Standardized "Real World" Software Availability

A longer-term vision for available software use on campus is to replace non-standard, non-supported systems with more industry standard and supported systems. This provides an internal advantage but also allows students to gain experience with software and systems they are more likely to encounter after graduation and upon entering the workforce.

- Access Anywhere Systems

This initiative would move systems towards an “access anywhere from any device” model. Currently, many software and systems can only be accessed from campus and from certain platforms. Security is always of a primary concern, but with a more mobile approach, systems that are currently locked down to a campus-only environment could be accessed from anywhere in the world with an internet connection.
Governance/Decentralized IS

Another key message communicated by the members of the Task Force was for more flexibility and autonomy in the implementation and use of technology on campus. This would mean moving from a more centralized model of Information Systems to a more decentralized model.

Immediate Needs:

• Technology Governance

A multi-constituent committee consisting of faculty, staff and students would be formed for the purpose of providing technology governance for the campus. This diverse group would be tasked with development of policies and procedures regarding technology use. In addition, this committee would vet new technology requests and set priorities for competing budget dollars.

Estimated Costs:
No costs to implement other than resource time for committee members, unless a budget is to be set aside for control by the Governance Committee for use in pilot projects, distributed IT budgets, etc.

Scope:
The Governance Committee, consisting of faculty, students and administrative staff, would have policy and procedure level authority for implementation and use of campus technology. If a pilot technology program were implemented, projects would be vetted via this committee. Under a distributed IT budget scenario, this group would also be responsible for the vetting of proposed new technologies for security, compliance and integration with existing systems.

Timeframe:
Funding or budget issues aside, an initial committee could be formed within a one to two month period.

Barriers to Implementation
• Turf
• Cabinet has to allow committee decisions to be implemented
• Must have broad representation
• Lack of knowledge of other functional areas
• Knowledge of budget process and levels
• Status quo

Consequences of Failure
• Status quo
• Falling behind

Scope/Miscellaneous Thoughts
• Should have clear goals and broad representation
• People need to have decision making authority
• Should have the authority to implement change
• Need a real committee with real input and real reporting with real outcomes
• Long-range planning potential to set us ahead
• Stakeholder involvement
• Get faculty/staff to have some responsibility for equipment they want/use
• Need to have constant benchmarking to insure compliance and forethought

• Distributed IT Budgets

This initiative would allow individual departments to determine technology purchases and needs from within their own budgets. This could include hardware, software and other technology initiatives. Currently, ‘cycle purchases’ are made through a limited budget controlled by Information Systems. New technologies would need to be vetted, likely through the Governance Committee, for viability, but the actual dollars would be controlled by departments.

Estimated Costs:
To be determined. Currently, the technology cycle purchases where these request are made within Information Systems only amounts to approximately $25,000.

Scope:
Purchasing of enterprise software and computers for employees, labs, etc. would remain within Information Systems. This method assures systems and software are kept up to date. However, departments could purchase additional computers from an approved list that would not be placed on a normal replacement cycle. Software or other technologies could also be purchased once vetted by a Governance Committee for viability, security and interoperability with other campus systems.

Timeline:
Implementation would probably need to begin at the start of a budget year, and significant input from the Controller and Accounting Office would be needed to determine the budget process.

Barriers to Implementation
• Education
• Many departments do not have near that type of budget; would have to rethink how funds are allocated
• Centralized process may facilitate better use of processes
• Where would maintenance costs for software fall
• Need in writing online parameters
• Funding

Consequences of Failure
• Run out of funds
• IT will still be looked upon as the “bad guy” because of their lack of funds

Scope/Miscellaneous Thoughts
• Like when RA goes to RHA to allocate for funds
• Deadline: before school year? at semester? throughout the semester?
• Mid-range to long-range scope of care and responsibility (tie to Governance)
• System or tracking to avoid duplicate purchases; have to have departments try to collaborate to cut costs
• Should have preferred vendors/boundaries
• Needs versus wants; taking a higher level look at what the University NEEDS
• Is this budget for necessities or for extra add-ons?
Mid-range goals (2-5 years):

- Compliance/security officer to provide improved digital security and compliance

Long-term Goals:

The longer term vision of governance and distributed information technology is to provide individual departments and areas more freedom to determine the technology and processes that best meet their needs. This includes removal of current hurdles and roadblocks to implementing state-of-the-art systems that enhance the missions and goals of the University.
Final Thoughts and Conclusions

As technology continues to integrate with nearly every aspect of daily life, it becomes more critical that the University finds ways to expand and stay current with the use of technology. This includes, but is not limited to, useful, robust and stable systems that are “always on” and available since university environments are generally a 24/7 operation. Failure to meet these goals can have a large negative impact in terms of competiveness, efficiency, safety and image.

Students have come to expect that they will have access to technology at least on par with, if not exceeding, that which they have experienced at the secondary education level. In some cases, this may well play into the final decision a prospective student makes regarding the institution they opt to attend.

Inadequate or improper use of technology can lead to inefficiencies that cost the University real money. Continuing with manual, antiquated processes that consume administrator and faculty time takes away from efforts that could be spent with students or performing other tasks. It could also limit the actual learning experience for the students in or out of the classroom.

Safety and image are also impacted by technology through the use of emergency notification systems, social media, digital signage, security cameras, etc. Failure in or lack of these systems or the inability to reach or protect individuals in the event of an emergency situation could result in serious ramifications to the University and its image.

The members of the Technology Subgroup and the larger Technology/Online Education Task Force would like to thank the entire University community for the time, effort, feedback and innovative ideas contributed to the Vision 2030 process. It is hoped that this report will serve as a resource for the University Planning Commission as we move towards a new period in UIndy history.

Technology/Online Education Task Force

<table>
<thead>
<tr>
<th>Technology Subgroup</th>
<th>Online Education Subgroup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steve Herriford - Chair</td>
<td>Ellen Miller - Chair</td>
</tr>
<tr>
<td>Julie Bednarski</td>
<td>Heidi Carl</td>
</tr>
<tr>
<td>Becca Cartledge</td>
<td>Lucie Cassinelli</td>
</tr>
<tr>
<td>Lisa Elwood</td>
<td>Tom Christenberry</td>
</tr>
<tr>
<td>Michael Kask</td>
<td>Jody Ferise</td>
</tr>
<tr>
<td>Kevin McKelvey</td>
<td>Julie Gahimer</td>
</tr>
<tr>
<td>Chris Moore</td>
<td>Fred May</td>
</tr>
<tr>
<td>Lisa Moore</td>
<td>Kathy Moran</td>
</tr>
<tr>
<td>Stacie Neuhaus</td>
<td>Jason Nye</td>
</tr>
<tr>
<td>Nicole Rodert</td>
<td>Serdar Oguz</td>
</tr>
<tr>
<td>Amy Allen Sekhar</td>
<td>Mariya Townsel</td>
</tr>
<tr>
<td>Mary SeRine</td>
<td>Nicole Taylor</td>
</tr>
<tr>
<td>Millind Thakar</td>
<td>Tamara Wolske</td>
</tr>
<tr>
<td>Jennifer VanSickle</td>
<td>Doug Woodwell</td>
</tr>
<tr>
<td>Matt Will</td>
<td></td>
</tr>
</tbody>
</table>